Форум на Kuban.ru (http://forums.kuban.ru/)
-   Наука и техника (http://forums.kuban.ru/f1048/)
-   -   Коту Шредингера (http://forums.kuban.ru/f1048/kotu_shredingera-7402651.html)

Yorsh 20.12.2015 21:00

Коту Шредингера
 
Любопытная статья из Вконтакта.
Никто в мире не понимает квантовую механику — это главное, что нужно о ней знать. Да, многие физики научились пользоваться ее законами и даже предсказывать явления по квантовым расчетам. Но до сих пор непонятно, почему присутствие наблюдателя определяет судьбу системы и заставляет ее сделать выбор в пользу одного состояния. «Теории и практики» подобрали примеры экспериментов, на исход которых неминуемо влияет наблюдатель, и попытались разобраться, что квантовая механика собирается делать с таким вмешательством сознания в материальную реальность.

Yorsh 20.12.2015 21:02

Кот Шредингера
Сегодня существует множество интерпретаций квантовой механики, самой популярной среди которых остается копенгагенская. Ее главные положения в 1920-х годах сформулировали Нильс Бор и Вернер Гейзенберг. А центральным термином копенгагенской интерпретации стала волновая функция — математическая функция, заключающая в себе информацию обо всех возможных состояниях квантовой системы, в которых она одновременно пребывает.
По копенгагенской интерпретации, доподлинно определить состояние системы, выделить его среди остальных может только наблюдение (волновая функция только помогает математически рассчитать вероятность обнаружить систему в том или ином состоянии). Можно сказать, что после наблюдения квантовая система становится классической: мгновенно перестает сосуществовать сразу во многих состояниях в пользу одного из них.

У такого подхода всегда были противники (вспомнить хотя бы «Бог не играет в кости» Альберта Эйнштейна), но точность расчетов и предсказаний брала свое. Впрочем, в последнее время сторонников копенгагенской интерпретации становится все меньше и не последняя причина тому — тот самый загадочный мгновенный коллапс волновой функции при измерении. Знаменитый мысленный эксперимент Эрвина Шредингера с бедолагой-котом как раз был призван показать абсурдность этого явления.

Итак, напоминаем содержание эксперимента. В черный ящик помещают живого кота, ампулу с ядом и некий механизм, который может в случайный момент пустить яд в действие. Например, один радиоактивный атом, при распаде которого разобьется ампула. Точное время распада атома неизвестно. Известен лишь период полураспада: время, за которое распад произойдет с вероятностью 50%.

Получается, что для внешнего наблюдателя кот внутри ящика существует сразу в двух состояниях: он либо жив, если все идет нормально, либо мертв, если распад произошел и ампула разбилась. Оба этих состояния описывает волновая функция кота, которая меняется с течением времени: чем дальше, тем больше вероятность, что радиоактивный распад уже случился. Но как только ящик открывается, волновая функция коллапсирует, и мы сразу видим исход живодерского эксперимента.
Выходит, пока наблюдатель не откроет ящик, кот так и будет вечно балансировать на границе между жизнью и смертью, а определит его участь только действие наблюдателя. Вот абсурд, на который указывал Шредингер.

Дифракция электронов
По опросу крупнейших физиков, проведенному газетой The New York Times, опыт с дифракцией электронов, стал одним из красивейших в истории науки. В чем его суть?

Есть источник, излучающий поток электронов в сторону экрана-фотопластинки. И есть преграда на пути этих электронов — медная пластинка с двумя щелями. Какой картины на экране можно ожидать, если представлять электроны просто маленькими заряженными шариками? Двух засвеченных полос напротив щелей.

В действительности на экране появляется гораздо более сложный узор из чередующихся черных и белых полос. Дело в том, что при прохождении через щели электроны начинают вести себя не как частицы, а как волны (подобно тому, как и фотоны, частицы света, одновременно могут быть и волнами). Потом эти волны взаимодействуют в пространстве, где-то ослабляя, а где-то усиливая друг друга, и в результате на экране появляется сложная картина из чередующихся светлых и темных полос.

При этом результат эксперимента не меняется, и если пускать электроны через щель не сплошным потоком, а поодиночке, даже одна частица может быть одновременно и волной. Даже один электрон может одновременно пройти через две щели (и это еще одно из важных положений копенгагенской интерпретации квантовой механики — объекты могут одновременно проявлять и свои «привычные» материальные свойства, и экзотические волновые).
Но при чем здесь наблюдатель? При том, что с ним и без того запутанная история стала еще сложнее. Когда в подобных экспериментах физики попытались зафиксировать с помощью приборов, через какую щель в действительности проходит электрон, картинка на экране резко поменялась и стала «классической»: два засвеченных участка напротив щелей и никаких чередующихся полос.

Электроны будто не захотели проявлять свою волновую природу под пристальным взором наблюдателя. Подстроились под его инстинктивное желание увидеть простую и понятную картинку. Мистика? Есть и куда более простое объяснение: никакое наблюдение за системой нельзя проводить без физического воздействия на нее. Но к этому вернемся еще чуть позже.

Yorsh 20.12.2015 21:04

Нагретый фуллерен
Опыты по дифракции частиц ставили не только на электронах, но и на куда больших объектах. Например, фуллеренах — крупных, замкнутых молекулах, составленных из десятков атомов углерода (так, фуллерен из шестидесяти атомов углерода по форме очень похож на футбольный мяч: полую сферу, сшитую из пяти- и шестиугольников).

Недавно группа из Венского университета во главе с профессором Цайлингером попыталась внести элемент наблюдения в подобные опыты. Для этого они облучали движущиеся молекулы фуллерена лазерным лучом. После, нагретые внешним воздействием, молекулы начинали светиться и тем неминуемо обнаруживали для наблюдателя свое место в пространстве.
Вместе с таким нововведением поменялось и поведение молекул. До начала тотальной слежки фуллерены вполне успешно огибали препятствия (проявляли волновые свойства) подобно электронам из прошлого примера, проходящим сквозь непрозрачный экран. Но позже, с появлением наблюдателя, фуллерены успокоились и стали вести себя как вполне законопослушные частицы материи.

Охлаждающее измерение
Одним из самых известных законов квантового мира является принцип неопределенности Гейзенберга: невозможно одновременно установить положение и скорость квантового объекта. Чем точнее измеряем импульс частицы, тем менее точно можно измерить ее положение. Но действие квантовых законов, работающих на уровне крошечных частиц, обычно незаметно в нашем мире больших макрообъектов.

Потому тем ценнее недавние эксперименты группы профессора Шваба из США, в которых квантовые эффекты продемонстрировали не на уровне тех же электронов или молекул фуллерена (их характерный диаметр — около 1 нм), а на чуть более ощутимом объекте — крошечной алюминиевой полоске.

Эту полоску закрепили с обеих сторон так, чтобы ее середина была в подвешенном состоянии и могла вибрировать под внешним воздействием. Кроме того, рядом с полоской находился прибор, способный с высокой точностью регистрировать ее положение.

В результате экспериментаторы обнаружили два интересных эффекта. Во-первых, любое измерение положения объекта, наблюдение за полоской не проходило для нее бесследно — после каждого измерения положение полоски менялось. Грубо говоря, экспериментаторы с большой точностью определяли координаты полоски и тем самым, по принципу Гейзенберга, меняли ее скорость, а значит и последующее положение.

Во-вторых, что уже совсем неожиданно, некоторые измерения еще и приводили к охлаждению полоски. Получается, наблюдатель может лишь одним своим присутствием менять физические характеристики объектов. Звучит совсем невероятно, но к чести физиков скажем, что они не растерялись — теперь группа профессора Шваба думает, как применить обнаруженный эффект для охлаждения электронных микросхем.

Замирающие частицы
Как известно, нестабильные радиоактивные частицы распадаются в мире не только ради экспериментов над котами, но и вполне сами по себе. При этом каждая частица характеризуется средним временем жизни, которое, оказывается, может увеличиваться под пристальным взором наблюдателя.

Впервые этот квантовый эффект предсказали еще в 1960-х годах, а его блестящее экспериментальное подтверждение появилось в статье, опубликованной в 2006 году группой нобелевского лауреата по физике Вольфганга Кеттерле из Массачусетского технологического института.

В этой работе изучали распад нестабильных возбужденных атомов рубидия (распадаются на атомы рубидия в основном состоянии и фотоны). Сразу после приготовления системы, возбуждения атомов за ними начинали наблюдать — просвечивать их лазерным пучком. При этом наблюдение велось в двух режимах: непрерывном (в систему постоянно подаются небольшие световые импульсы) и импульсном (система время от времени облучается импульсами более мощными).

Полученные результаты отлично совпали с теоретическими предсказаниями. Внешние световые воздействия действительно замедляют распад частиц, как бы возвращают их в исходное, далекое от распада состояние. При этом величина эффекта для двух исследованных режимов также совпадает с предсказаниями. А максимально жизнь нестабильных возбужденных атомов рубидия удалось продлить в 30 раз.

Yorsh 20.12.2015 21:05

Квантовая механика и сознание
Электроны и фуллерены перестают проявлять свои волновые свойства, алюминиевые пластинки охлаждаются, а нестабильные частицы замирают в своем распаде: под всесильным взором наблюдателя мир меняется. Чем не свидетельство вовлеченности нашего разума в работу мира вокруг? Так может быть правы были Карл Юнг и Вольфганг Паули (австрийcкий физик, лауреат Нобелевской премии, один из пионеров квантовой механики), когда говорили, что законы физики и сознания должны рассматриваться как взаимодополняющие?

Но так остается только один шаг до дежурного признания: весь мир вокруг суть иллюзорное порождение нашего разума. Жутковато? («Вы и вправду думаете, что Луна существует лишь когда вы на нее смотрите?» — комментировал Эйнштейн принципы квантовой механики). Тогда попробуем вновь обратиться к физикам. Тем более, в последние годы они все меньше жалуют копенгагенскую интерпретацию квантовой механики с ее загадочным коллапсом волной функции, на смену которому приходит другой, вполне приземленный и надежный термин — декогеренция.
Дело вот в чем — во всех описанных опытах с наблюдением экспериментаторы неминуемо воздействовали на систему. Подсвечивали ее лазером, устанавливали измеряющие приборы. И это общий, очень важный принцип: нельзя пронаблюдать за системой, измерить ее свойства, не взаимодействовав с ней. А где взаимодействие, там и изменение свойств. Тем более, когда с крошечной квантовой системой взаимодействуют махины квантовых объектов. Так что вечный, буддистский нейтралитет наблюдателя невозможен.

Как раз это объясняет термин «декогеренция» — необратимый с точки зрения термодинамики процесс нарушения квантовых свойств системы при ее взаимодействии с другой, крупной системой. Во время такого взаимодействия квантовая система утрачивает свои изначальные черты и становится классической, «подчиняется» системе крупной. Этим и объясняется парадокс с котом Шредингера: кот представляет собой настолько большую систему, что его просто нельзя изолировать от мира. Сама постановка мысленного эксперимента не совсем корректна.
В любом случае, по сравнению с реальностью как актом творения сознания, декогеренция звучит куда более спокойно. Даже, может быть, слишком спокойно. Ведь с таким подходом весь классический мир становится одним большим эффектом декогеренции. А как утверждают авторы одной из самых серьезных книг в этой области, из таких подходов еще и логично вытекают утверждения вроде «в мире не существует никаких частиц» или «не существует никакого времени на фундаментальном уровне».

Созидающий наблюдатель или всесильная декогеренция? Приходится выбирать из двух зол. Но помните — сейчас ученые все больше убеждаются, что в основе наших мыслительных процессов лежат те самые пресловутые квантовые эффекты. Так что где заканчивается наблюдение и начинается реальность — выбирать приходится каждому из нас.

Yorsh 20.12.2015 21:11

Мне как агностику ближе вариант материальности мыслительного процесса. А вам?

Лютозаръ 20.12.2015 22:46

[quote=Ёрш;40935409]Мне как агностику ближе вариант материальности мыслительного процесса. А вам? [/quote]
По щучьему велению, по моему хотению.

CK 21.12.2015 10:33

...убеждался не однократно, что мысли изменяют ход процессов в окружающем мире.
Не исключено, что это делает не сам человек, а некая система "слушающая" его.
В прочем, это уже эзотерика, потому здесь говорить об этом опасно.
:-)
.
Приведённые примеры с лазером, как-то не впечатлили.
Происходит явное воздействие на объект.
.
Пример с щелью более правдоподобен, но опять же, не будучи специалистом в этой области, мне не понятно какими способами считывается информация.
Возможно приборы "контактные" тогда всё это фигня.
Если-же во время опытов приборы не отключаются и меняется только взор наблюдателя, то это уже интересно.

CK 21.12.2015 10:38

...видимо для обсуждения придётся проводить эксперимент самим.
Кот шрёденгера у нас уже есть, яд для него я думаю найдут и коробку тоже.
Господа, у кого найдётся немного радиации?
:-)

Кот Шрёдингера 21.12.2015 16:22

Один (1, не Один) уже доэксперементировался
[youtube]eBDPYIARV7Y[/youtube]

Лютозаръ 21.12.2015 19:31

[quote=CK;40938380]яд для него я думаю найдут[/quote]
По яду и радиации для уважаемого могу помочь.

drdrdr 21.12.2015 19:44

Что характерно - деньгами и самогонкой помочь обычно некому, а как яду и радиации, то всегда найдётся у кого-нибудь.

Лютозаръ 22.12.2015 07:03

10-drdrdr >
Каков стол, таков и стул.

Кот Шрёдингера 22.12.2015 08:25

[quote]
Парадоксальность квантовой механики

Научно-популярные рассказы о квантовых эффектах часто грешат излишней сенсационностью, подчеркнутой парадоксальностью. Нередко такая искусственно раздутая парадоксальность подкрепляется высказыванием Ричарда Фейнмана о том, что никто по-настоящему не понимает квантовой механики. Такая цитата специально усиливает впечатление, что физики-де сами не понимают того, что они получают в своих квантовых экспериментах. Это, конечно, не так. Законы квантового мира очень непривычны с точки зрения повседневной интуиции, от этого никуда не деться. Но это вовсе не значит, что в квантовом мире реализуются любые странности, какими бы дикими и противоречащими логике вещей они ни казались. Квантовые законы математически самосогласованы, и если ими воспользоваться, то разнообразные «квантовые парадоксы» — парадоксы с житейской точки зрения! — вполне распутываются.[/quote]
© Игорь Иванов из статьи "Эксперименты по наблюдению «квантового Чеширского Кота» не столь парадоксальны, как кажется на первый взгляд"
[url]http://elementy.ru/news/432299[/url]

Парадоксальность квантовой механики и выводы о вилянии сознания экспериментатора на результат измерений ("поведения" частицы) - это преимущественно журналистские ляпы и результат неверных, ошибочных аналогий.

[quote]
Аналогия (от греч. analogia — соответствие) — сходство между предметами, явлениями и т.д.

Умозаключение по аналогии (или просто аналогия) — индуктивное умозаключение, когда на основе сходства двух объектов по каким-то одним параметрам делается вывод об их сходстве также по другом параметрам.
<...>
Общая схема умозаключения по аналогии:

Объект А имеет признаки а, b, с.
Объект B сходен с A в том, что имеет признаки а и b.
Значит, объект В имеет, вероятно, и признак с.

© Ивин А.А. - Логика / Глава 11. Индуктивные рассуждения / 7. Аналогия
[/quote]
Вот тут то коварство аналогий и поджидает в засаде, когда вместо вероятности признака [b]с[/b] объект А уравнивают с объектом В.

[quote]
Нам хотелось бы подчеркнуть очень важное обстоятельство и предостеречь от часто допускаемой ошибки. Пусть вас интересует только амплитуда того, что электрон попадает в х, причем вам безразлично, в какой счетчик попал фотон — в D1 или в D2. Должны ли вы складывать амплитуды (1.8) и (1.9)? Нет! [b]Никогда не складывайте амплитуды разных, отличных друг от друга конечных состояний.[/b] Как только фотон был воспринят одним из фотонных счетчиков, мы всегда, если надо, можем узнать, не возмущая больше системы, какая из альтернатив (взаимоисключающих событий) реализовалась. У каждой альтернативы есть своя вероятность, полностью независимая от другой. Повторяем, не складывайте амплитуд для различных конечных условий (под «конечным» мы понимаем тот момент, когда нас интересует вероятность, т. е. когда опыт «закончен»). Зато нужно складывать амплитуды для различных неразличимых альтернатив в ходе самого опыта, прежде чем целиком закончится процесс. В конце процесса вы можете, если хотите, сказать, что вы «не желаете смотреть на фотон». Это ваше личное дело, но все же амплитуды складывать нельзя. Природа не знает, на что вы смотрите, на что нет, она ведет себя так, как ей положено, и ей безразлично, интересуют ли вас ее данные или нет.

[b]Фейнмановские лекции по физике >> Том 8 >> Глава 1. Амплитуды вероятности[/b]
Картина интерференции от двух щелей
[url]http://www.all-fizika.com/article/index.php?id_article=1911[/url]
[/quote]
Квантовая механика не оперирует чёткими полярными критериями, она оперирует [b]амплитудами вероятности[/b], т.е. [url=https://ru.wikipedia.org/wiki/Статистическая_значимость]статистической значимостью[/url].

Кот Шрёдингера 22.12.2015 08:36

[url]http://psi-logic.narod.ru/psi/mini7.htm[/url]
[b]Аналогии лгут[/b]

[em]Кажется, что применение аналогий и метафор делает доказательство наглядным и понятным. Однако на деле понимание, основанное на аналогиях, оказывается иллюзией, а доказательство ложным. Почему так происходит?

Прежде всего, давайте рассмотрим ряд примеров, которые бы доказали только что брошенное обвинение в адрес аналогий. Эти примеры должны продемонстрировать, что доказательство через аналогии бывает (по крайней мере иногда) ошибочным.[/em]
[quote]
Пример 1

- Господа! Посмотрите на козла и на щуку. У козла столько же глаз, сколько и у щуки. Обратите внимание также на наличие хвоста у обоих. А посмотрите на их морды? У щуки морда вытянутая, и во рту имеются зубы. Аналогично, у козла морда вытяутая, и рот зубаст. Щука, как известно, рыба. Аналогично и козел - тоже рыба.

- Господа! Я не согласен с предыдущим оратором! Давайте сравним козла с петухом. Посмотрите на них. У козла два глаза. Аналогично, и у петуха два глаза. У петуха есть хвост. Аналогично, и у козла есть хвост. А борода? Посмотрите, у них у обоих есть борода. Петух, как известно, птица. Аналогично и козел - тоже птица, а вовсе не рыба![/quote]

[em]Память человеческая ассоциативна. Гораздо проще запомнить тот факт, что два объекта имеют общие свойства, а потом (по ассоциации) вспомнить, какие это свойства; чем запоминать свойства и объекты по отдельности. Например, вспомнив образ вращающегося на нитке шарика, можно вспомнить о том, что между Землей и Солнцем существует похожая сила. Или, вспомнив картинку из учебника биологии, на которой изображен зародыш, напоминающий головастика, по ассоциации припомнить, что далекие предки человека вышли из океана.

Однако, как только вы встретите аналогию в чьих-то рассуждениях или попытаетесь подкрепить свое доказательство красивым образным сравнением... вспомните, что в доказательствах [b]аналогии лгут[/b]! [/em]


Текущее время: 16:09. Часовой пояс GMT +3.